
Proceedings Paper
Multiple instance learning for hidden Markov models: application to landmine detectionFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Multiple instance learning is a recently researched learning paradigm in machine intelligence which operates under conditions of uncertainty. A Multiple Instance Hidden Markov Model (MI-HMM) is investigated with applications to landmine detection using ground penetrating radar data. Without introducing any additional parameters, the MI-HMM provides an elegant and simple way to learn the parameters of an HMM in a multiple instance framework. The efficacy of the model is shown on a real landmine dataset. Experiments on the landmine dataset show that MI-HMM learning is effective.
Paper Details
Date Published: 7 June 2013
PDF: 8 pages
Proc. SPIE 8709, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, 87091M (7 June 2013); doi: 10.1117/12.2016489
Published in SPIE Proceedings Vol. 8709:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII
J. Thomas Broach; Jason C. Isaacs, Editor(s)
PDF: 8 pages
Proc. SPIE 8709, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII, 87091M (7 June 2013); doi: 10.1117/12.2016489
Show Author Affiliations
Paul Gader, Univ. of Florida (United States)
Published in SPIE Proceedings Vol. 8709:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVIII
J. Thomas Broach; Jason C. Isaacs, Editor(s)
© SPIE. Terms of Use
