Share Email Print
cover

Proceedings Paper

Ear recognition: a complete system
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ear Recognition has recently received significant attention in the literature. Even though current ear recognition systems have reached a certain level of maturity, their success is still limited. This paper presents an efficient complete ear-based biometric system that can process five frames/sec; Hence it can be used for surveillance applications. The ear detection is achieved using Haar features arranged in a cascaded Adaboost classifier. The feature extraction is based on dividing the ear image into several blocks from which Local Binary Pattern feature distributions are extracted. These feature distributions are then fused at the feature level to represent the original ear texture in the classification stage. The contribution of this paper is three fold: (i) Applying a new technique for ear feature extraction, and studying various optimization parameters for that technique; (ii) Presenting a practical ear recognition system and a detailed analysis about error propagation in that system; (iii) Studying the occlusion effect of several ear parts. Detailed experiments show that the proposed ear recognition system achieved better performance (94:34%) compared to other shape-based systems as Scale-invariant feature transform (67:92%). The proposed approach can also handle efficiently hair occlusion. Experimental results show that the proposed system can achieve about (78%) rank-1 identification, even in presence of 60% occlusion.

Paper Details

Date Published: 31 May 2013
PDF: 11 pages
Proc. SPIE 8712, Biometric and Surveillance Technology for Human and Activity Identification X, 87120N (31 May 2013); doi: 10.1117/12.2015946
Show Author Affiliations
Ayman Abaza, West Virginia High Technology Consortium Foundation (United States)
Cairo Univ. (Egypt)
Mary Ann F. Harrison, West Virginia High Technology Consortium Foundation (United States)


Published in SPIE Proceedings Vol. 8712:
Biometric and Surveillance Technology for Human and Activity Identification X
Ioannis Kakadiaris; Walter J. Scheirer; Laurence G. Hassebrook, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray