
Proceedings Paper
Sol gel ZnO films doped with Mg and Li evaluated for charged particle detectorsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
In this work we assess the feasibility of ZnO films deposited from a sol gel precursor as a material for thin film charged particle detectors. There are many reports of polycrystalline ZnO thin film transistors (TFTs) in the literature, deposited by sputtering, pulsed laser deposition, and sol gel. There are also reports of sol gel derived ZnO doped with Li or Mg to increase the resistivity, however, these works only measure resistivity of the films, without determining the effect of doping on the carrier concentration. We study the effects of doping the ZnO with Mg and Li as well as the effects of thickness on the films’ resistivity, mobility, and carrier concentration, since these material parameters are critical for a charged particle sensor. Carrier concentration is particularly important because it must be kept low in order for the intrinsic region of a p-i-n diode to be depleted. In order to accomplish this we fabricate and electrically characterize test structures for resistivity, test structures for hall measurement, common back-gate TFTs, and metal-insulator-semiconductor (MIS) capacitors. We also conduct physical characterization techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), electron microscopy, UV-Vis spectroscopy, and ellipsometry to determine the effect of doping and film thickness on the microstructure and optical properties of the ZnO.
Paper Details
Date Published: 29 May 2013
PDF: 9 pages
Proc. SPIE 8730, Flexible Electronics, 87300G (29 May 2013); doi: 10.1117/12.2015856
Published in SPIE Proceedings Vol. 8730:
Flexible Electronics
David R. Allee; Eric W. Forsythe, Editor(s)
PDF: 9 pages
Proc. SPIE 8730, Flexible Electronics, 87300G (29 May 2013); doi: 10.1117/12.2015856
Show Author Affiliations
John W. Murphy, The Univ. of Texas at Dallas (United States)
Alexander Eddy, The Univ. of Texas at Dallas (United States)
George R. Kunnen, Arizona State Univ. (United States)
Israel Mejia, The Univ. of Texas at Dallas (United States)
Alexander Eddy, The Univ. of Texas at Dallas (United States)
George R. Kunnen, Arizona State Univ. (United States)
Israel Mejia, The Univ. of Texas at Dallas (United States)
Kurtis D. Cantley, The Univ. of Texas at Dallas (United States)
David R. Allee, Arizona State Univ. (United States)
Manuel A. Quevedo-Lopez, The Univ. of Texas at Dallas (United States)
Bruce E. Gnade, The Univ. of Texas at Dallas (United States)
David R. Allee, Arizona State Univ. (United States)
Manuel A. Quevedo-Lopez, The Univ. of Texas at Dallas (United States)
Bruce E. Gnade, The Univ. of Texas at Dallas (United States)
Published in SPIE Proceedings Vol. 8730:
Flexible Electronics
David R. Allee; Eric W. Forsythe, Editor(s)
© SPIE. Terms of Use
