Share Email Print
cover

Proceedings Paper

Heat behavior of extreme-ultraviolet pellicle including mesh support
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As is well known, a very short wavelength of 13.5 nm EUV is strongly absorbed by the most materials and this might cause huge heat deposition and as a result the pellicle deformation. Previously we have shown that the temperature rising of the thin pellicle membrane is minimal and cooling between the exposures is efficient enough so that we do not have to worry about the pellicle deformation. People still worry about the temperature rising of the mesh structure. We find that the cooling of the mesh was very slow and can pile up and damage the pellicle because thick (~ 50 μm) mesh structure has much larger mass compared to very thin (~ 50 nm) membrane. In order to see this heat behavior of the mesh, we intentionally increased the exposure time up to 2000 ms from normal 10 ms for Si, Zr, and Ni mesh. For the case of silicon mesh, the peak temperature rises up with the exposure time initially, but the temperature is not increased any more and is saturated even though more energy is deposited as the exposure time is increased. This result shows again that the heat pile up to pellicle including both membrane and mesh support can be managed and EUV pellicle can be used for EUV high volume manufacturing.

Paper Details

Date Published: 1 April 2013
PDF: 7 pages
Proc. SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV, 86792X (1 April 2013); doi: 10.1117/12.2012288
Show Author Affiliations
In-Seon Kim, Hanyang Univ. (Korea, Republic of)
Eun-Jin Kim, Hanyang Univ. (Korea, Republic of)
Ji-Won Kim, Hanyang Univ. (Korea, Republic of)
Hye-Keun Oh, Hanyang Univ. (Korea, Republic of)


Published in SPIE Proceedings Vol. 8679:
Extreme Ultraviolet (EUV) Lithography IV
Patrick P. Naulleau, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray