Share Email Print

Proceedings Paper

Ultrasonic studies of fly ash/polyurea composites
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Due to its excellent thermo-mechanical properties, polyurea is attracting more and more attention in blast-mitigating applications. In order to enhance its capability of blast-induced stress-wave management, we seek to develop polyurea-based composites in this work. Fly ash which consists of hollow particles with porous shell and low apparent density was chosen as filler and a series of fly ash/polyurea composites with various fly ash volume fractions were fabricated. The dynamic mechanical behavior of the composites was determined by a personal computer (PC) based ultrasonic system in the 0.5-2MHz frequency range between -60°C to 30°C temperatures. Velocity and attenuation of both longitudinal and shear ultrasonic waves were measured. The complex longitudinal and shear moduli were then computed from these measurements. Combining these results provided an estimate of the complex bulk and Young’s moduli of the fly ash/polyurea composites at high frequencies. These results will be presented and compared with those of pure polyurea elastomer.

Paper Details

Date Published: 3 April 2013
PDF: 5 pages
Proc. SPIE 8689, Behavior and Mechanics of Multifunctional Materials and Composites 2013, 86891C (3 April 2013); doi: 10.1117/12.2012020
Show Author Affiliations
Jing Qiao, Harbin Institute of Technology (China)
Univ. of California, San Diego (United States)
Alireza V. Amirkhizi, Univ. of California, San Diego (United States)
Sia Nemat-Nasser, Univ. of California, San Diego (United States)
Gaohui Wu, Harbin Institute of Technology (China)

Published in SPIE Proceedings Vol. 8689:
Behavior and Mechanics of Multifunctional Materials and Composites 2013
Nakhiah C. Goulbourne; Hani E. Naguib, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?