Share Email Print

Proceedings Paper

Study on dissolution behavior of polymer-bound and polymer-blended photo-acid generator (PAG) resists
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.

Paper Details

Date Published: 29 March 2013
PDF: 8 pages
Proc. SPIE 8682, Advances in Resist Materials and Processing Technology XXX, 86821B (29 March 2013); doi: 10.1117/12.2011636
Show Author Affiliations
Hiroki Yamamoto, Osaka Univ. (Japan)
Takahiro Kozawa, Osaka Univ. (Japan)
Seiichi Tagawa, Osaka Univ. (Japan)

Published in SPIE Proceedings Vol. 8682:
Advances in Resist Materials and Processing Technology XXX
Mark H. Somervell, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?