
Proceedings Paper
Laser-plasma chemistry: principles and applicationsFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Laser-plasma chemistry has become a rapidly rising field in science and technology. Current interest in the process
called laser-induced dielectric breakdown, while the phenomenon is called a laser spark, is mainly motivated by a rapidly
growing area of their applications in the study of chemical reactions and their utilization in chemical analysis. A
systematic study of chemical reactions initiated by laser sparks is based on finding simple reproducible conditions for the
formation of small biomolecules, the preparation of well-defined fine particles, laser ignition of fuel mixtures, and so on.
Research on LIDB-initiated chemical reactions has been triggered again recently by the advent of nanotechnologies. The
systematic part of this contribution describes the laser-plasma-chemical behaviour of simple inorganic gases and their
mixtures, and metallic and organic vapours. The strongest motivation for the studying laser-spark chemistry comes from
the planetary sciences, where laser sparks have been used as a laboratory model of high-energy-density phenomena (e.g.,
cometary impact, lightning) in planetary atmospheres. This contribution is primarily focused on the laser-plasma
chemistry of homogeneous gases, but chemical consequences of LIDB in liquids (laser cavitation) and on liquid-solid
and gas-solid interfaces are also briefly reviewed. Particular processes responsible for the chemical action of a laser
spark are identified and discussed.
Paper Details
Date Published: 30 January 2013
PDF: 7 pages
Proc. SPIE 8677, XIX International Symposium on High-Power Laser Systems and Applications 2012, 86770C (30 January 2013); doi: 10.1117/12.2011333
Published in SPIE Proceedings Vol. 8677:
XIX International Symposium on High-Power Laser Systems and Applications 2012
Kerim R. Allakhverdiev, Editor(s)
PDF: 7 pages
Proc. SPIE 8677, XIX International Symposium on High-Power Laser Systems and Applications 2012, 86770C (30 January 2013); doi: 10.1117/12.2011333
Show Author Affiliations
Irena Matulková, Institute of Physics of the ASCR, v.v.i. (Czech Republic)
Charles Univ. in Prague (Czech Republic)
Charles Univ. in Prague (Czech Republic)
Libor Juha, Institute of Physics of the ASCR, v.v.i. (Czech Republic)
Published in SPIE Proceedings Vol. 8677:
XIX International Symposium on High-Power Laser Systems and Applications 2012
Kerim R. Allakhverdiev, Editor(s)
© SPIE. Terms of Use
