Share Email Print

Proceedings Paper

3-dimensional fabrication of soft energy harvesters
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Dielectric elastomer generators (DEG) provide an opportunity to harvest energy from low frequency and aperiodic sources. Because DEG are soft, deformable, high energy density generators, they can be coupled to complex structures such as the human body to harvest excess mechanical energy. However, DEG are typically constrained by a rigid frame and manufactured in a simple planar structure. This planar arrangement is unlikely to be optimal for harvesting from compliant and/or complex structures. In this paper we present a soft generator which is fabricated into a 3 Dimensional geometry. This capability will enable the 3-dimensional structure of a dielectric elastomer to be customised to the energy source, allowing efficient and/or non-invasive coupling. This paper demonstrates our first 3 dimensional generator which includes a diaphragm with a soft elastomer frame. When the generator was connected to a self-priming circuit and cyclically inflated, energy was accumulated in the system, demonstrated by an increased voltage. Our 3D generator promises a bright future for dielectric elastomers that will be customised for integration with complex and soft structures. In addition to customisable geometries, the 3D printing process may lend itself to fabricating large arrays of small generator units and for fabricating truly soft generators with excellent impedance matching to biological tissue. Thus comfortable, wearable energy harvesters are one step closer to reality.

Paper Details

Date Published: 9 April 2013
PDF: 6 pages
Proc. SPIE 8687, Electroactive Polymer Actuators and Devices (EAPAD) 2013, 86870J (9 April 2013); doi: 10.1117/12.2009919
Show Author Affiliations
Thomas McKay, The Univ. of Auckland (New Zealand)
Peter Walters, Univ. of the West of England (United Kingdom)
Jonathan Rossiter, Univ. of Bristol (United Kingdom)
Benjamin O'Brien, The Univ. of Auckland (New Zealand)
Iain Anderson, The Univ. of Auckland (New Zealand)

Published in SPIE Proceedings Vol. 8687:
Electroactive Polymer Actuators and Devices (EAPAD) 2013
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?