
Proceedings Paper
Identifying in vivo DCE MRI parameters correlated with ex vivo quantitative microvessel architecture: A radiohistomorphometric approachFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We introduce a novel radiohistomorphometric method for quantitative correlation and subsequent discovery of imaging markers for aggressive prostate cancer (CaP). While this approach can be employed in the context any imaging modality and disease domain, we seek to identify quantitative dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) attributes that are highly correlated with density and architecture of tumor microvessels, surrogate markers of CaP aggressiveness. This retrospective study consisted of five Gleason score matched patients who underwent 3 Tesla multiparametric MRI prior to radical prostatectomy (RP). The excised gland was sectioned and quartered with a rotary knife. For each serial section, digitized images of individual quadrants were reconstructed into pseudo whole mount sections via previously developed stitching program. The individual quadrants were stained with vascular marker CD31 and annotated for CaP by an expert pathologist. The stained microvessel regions were quantitatively characterized in terms of density and architectural arrangement via graph algorithms, yielding a series of quantitative histomorphometric features. The reconstructed pseudo whole mount histologic sections were non-linearly co-registered with DCE MRI to identify tumor extent on MRI on a voxel-by-voxel basis. Pairwise correlations between kinetic and microvessel features within CaP annotated regions on the two modalities were computed to identify highly correlated attributes. Preliminary results of the radiohistomorphometric correlation identified 8 DCE MRI kinetic features that were highly and significantly (p<0.05) correlated with a number of microvessel parameters. Most of the identified imaging features were related to rate of washout (Rwo) and initial area under the curve (IAUC). Association of those attributes with Gleason patterns showed that the identified imaging features clustered most of the tumors with primary Gleason pattern of 3 together. These results suggest that Rwo and IAUC may be promising candidate imaging markers for identification of aggressive CaP in vivo.
Paper Details
Date Published: 29 March 2013
PDF: 14 pages
Proc. SPIE 8676, Medical Imaging 2013: Digital Pathology, 867604 (29 March 2013); doi: 10.1117/12.2008136
Published in SPIE Proceedings Vol. 8676:
Medical Imaging 2013: Digital Pathology
Metin N. Gurcan; Anant Madabhushi, Editor(s)
PDF: 14 pages
Proc. SPIE 8676, Medical Imaging 2013: Digital Pathology, 867604 (29 March 2013); doi: 10.1117/12.2008136
Show Author Affiliations
Asha Singanamalli, Case Western Reserve Univ. (United States)
Rachel Sparks, Rutgers, The State Univ. of New Jersey (United States)
Mirabela Rusu, Case Western Reserve Univ. (United States)
Natalie Shih, Univ. of Pennsylvania (United States)
Amy Ziober, Univ. of Pennsylvania (United States)
Rachel Sparks, Rutgers, The State Univ. of New Jersey (United States)
Mirabela Rusu, Case Western Reserve Univ. (United States)
Natalie Shih, Univ. of Pennsylvania (United States)
Amy Ziober, Univ. of Pennsylvania (United States)
John Tomaszewski, Univ. at Buffalo (United States)
Mark Rosen, Univ. of Pennsylvania (United States)
Michael Feldman, Univ. of Pennsylvania (United States)
Anant Madabhushi, Case Western Reserve Univ. (United States)
Mark Rosen, Univ. of Pennsylvania (United States)
Michael Feldman, Univ. of Pennsylvania (United States)
Anant Madabhushi, Case Western Reserve Univ. (United States)
Published in SPIE Proceedings Vol. 8676:
Medical Imaging 2013: Digital Pathology
Metin N. Gurcan; Anant Madabhushi, Editor(s)
© SPIE. Terms of Use
