Share Email Print

Proceedings Paper

Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Clutter noise is an important challenge in photocoustic (PA) and ultrasound (US) imaging as they degrade the image quality. In this paper, the short-lag spatial coherence (SLSC) imaging technique is used to reduce clutter and side lobes in PA images. In this technique, images are obtained through the spatial coherence of PA signals at small spatial distances across the transducer aperture. The performance of this technique in improving image quality and detecting point targets is compared with a conventional delay-and-sum (DAS) beamforming technique. A superior contrast, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) are observed when SLSC imaging is employed. Point spread function of point targets shows an improved spatial resolution and reduced side lobes when compared with DAS beamforming. Also shown is the impact of increasing the number of frames on which SLSC is applied. The results show that contrast, CNR, and SNR are improved with increasing number of frames.

Paper Details

Date Published: 4 March 2013
PDF: 6 pages
Proc. SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing 2013, 85813Y (4 March 2013); doi: 10.1117/12.2005061
Show Author Affiliations
Behnaz Pourebrahimi, Ryerson Univ. (Canada)
Sangpil Yoon, Ryerson Univ. (Canada)
Dustin Dopsa, Ryerson Univ. (Canada)
Michael C. Kolios, Ryerson Univ. (Canada)

Published in SPIE Proceedings Vol. 8581:
Photons Plus Ultrasound: Imaging and Sensing 2013
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?