Share Email Print
cover

Proceedings Paper

The effect of aberrated recording beams on reflecting Bragg gratings
Author(s): Marc SeGall; Daniel Ott; Ivan Divliansky; Leonid B. Glebov
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The effect of aberrations present in the recording beams of a holographic setup is discussed regarding the period and spectral response of a reflecting volume Bragg grating. Imperfect recording beams result in spatially varying resonant wavelengths and the side lobes of the spectrum are washed out. Asymmetrical spectra, spectral broadening, and a reduction in peak diffraction efficiency may also be present, though these effects are less significant for gratings with wider spectral widths. Reflecting Bragg gratings (RBGs) are used as elements in a variety of applications including spectral beam combining1,2, mode locking3,4, longitudinal and transverse mode selection in lasers5,6, and sensing7,8. For applications requiring narrow spectral selectivity9, or large apertures10, these gratings must have a uniform period throughout the length of the recording medium, which may be on the order of millimeters. However, when using typical recording techniques such as two-beam interference for large aperture gratings and phase-mask recording of fiber gratings, aberrations from the optical elements in the system result in an imperfect grating structure11-13. In this paper we consider the effects of aberrations on large aperture gratings recorded in thick media using the two-beam interference technique. Previous works in analyzing the effects of aberrations have considered the effects of aberrations in a single recording plane where the beams perfectly overlap. Such an approach is valid for thin media (on the order of tens of microns), but for thick recording media (on the order of several millimeters) there will be a significant shift in the positions of the beams relative to each other as they traverse the recording medium. Therefore, the fringe pattern produced will not be constant throughout the grating if one or both beams have a non-uniform wavefront. Such non-uniform gratings may have a wider spectral width, a shifted resonant wavelength, or other problems. It is imperative therefore to know what the effects of aberrations will have on the properties of the RBGs. Thus, in this paper we consider the imperfect fringe pattern caused by the recording beams and its effect on the diffraction efficiency and spectral profile of the recorded reflecting volume Bragg gratings.

Paper Details

Date Published: 1 March 2013
PDF: 5 pages
Proc. SPIE 8644, Practical Holography XXVII: Materials and Applications, 864408 (1 March 2013); doi: 10.1117/12.2004997
Show Author Affiliations
Marc SeGall, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Daniel Ott, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Ivan Divliansky, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Leonid B. Glebov, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 8644:
Practical Holography XXVII: Materials and Applications
Hans I. Bjelkhagen; V. Michael Bove Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray