
Proceedings Paper
Modeling of semiconductor saturable absorber mirrors using dynamic mode analysisFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Semiconductor saturable absorber mirrors (SESAMs) are used to produce passively Q-switched ultrashort pulsed
lasers. Numerical modeling of physical effects of SESAM is required to effectively design this type of lasers. For this purpose, simulations are performed to study the dynamic behavior of Gauss modes, gain of modes and saturation of the saturable absorber mirror. The laser beam quality has to be good enough in order to avoid chaotic laser behavior. We extended our dynamic mode analysis (DMA) algorithm to calculate laser beam quality. This simulation technique is based on rate equations for a set of Gauss modes and population inversions. Gain of each mode can be calculated separately by solving the corresponding set of rate equations. We have assumed that the reflectivity of the mirror is spatially invariant in the SESAMs model. An additional rate equation is required to include the saturation of SESAM. This equation considers parameters such as modulation depth, saturation fluence and relaxation time. Simulation results show that our model can predict pulse energy and non-chaotic behavior of the laser.
Paper Details
Date Published: 22 February 2013
PDF: 8 pages
Proc. SPIE 8600, Laser Resonators, Microresonators, and Beam Control XV, 86000V (22 February 2013); doi: 10.1117/12.2004005
Published in SPIE Proceedings Vol. 8600:
Laser Resonators, Microresonators, and Beam Control XV
Alexis V. Kudryashov; Alan H. Paxton; Vladimir S. Ilchenko; Lutz Aschke; Kunihiko Washio, Editor(s)
PDF: 8 pages
Proc. SPIE 8600, Laser Resonators, Microresonators, and Beam Control XV, 86000V (22 February 2013); doi: 10.1117/12.2004005
Show Author Affiliations
Christoph Pflaum, Univ. Erlangen-Nürnberg (Germany)
Zhabiz Rahimi, ASLD GmbH (Germany)
Published in SPIE Proceedings Vol. 8600:
Laser Resonators, Microresonators, and Beam Control XV
Alexis V. Kudryashov; Alan H. Paxton; Vladimir S. Ilchenko; Lutz Aschke; Kunihiko Washio, Editor(s)
© SPIE. Terms of Use
