Share Email Print

Proceedings Paper

Acoustic-resolution photoacoustic imaging system with simple fiber illumination
Author(s): Yasuyuki Tsunoi; Shunichi Sato; Ryota Watanabe; Satoko Kawauchi; Hiroshi Ashida; Mitsuhiro Terakawa
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Acoustic-resolution photoacoustic microscopy (AR-PAM) with dark-field confocal illumination enables unique high-resolution visualization of chromophores in tissue, such as microvasculatures, within depths of a few millimeters. However, most current systems are bulky and use complex optical components for illumination, thus requiring highly sensitive alignment. In this study, we developed a compact alignment-free acoustic-resolution photoacoustic imaging system with simple fiber illumination. Four optical fibers were placed in four directions around a high-frequency (30-MHz) ultrasound sensor attached with the high-numerical-aperture acoustic lens. The setting angle of the fibers were determined to form a dark field on the tissue surface under the acoustic lens and for the four light beams from the fibers to be combined near the focal point of the acoustic lens, i.e., at a depth of around 1.2 mm in the tissue. The acoustic lens and output ends of the fibers were capped with an acoustically and optically transparent engineering plastic sheet, whose surface can be directly placed and scanned on the tissue surface with ultrasound gel. The diameter and height of this imaging head were as small as 32 mm and 27 mm respectively. The phantom study showed that the lateral signal spreading was 120 μm, which agreed well with the theoretical value of 112 μm. With the system, we attempted to image vasculatures in the rat skin, demonstrating high-contrast visualization of the blood vessels of a few hundred micrometers in diameter in the tissue.

Paper Details

Date Published: 4 March 2013
PDF: 6 pages
Proc. SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing 2013, 85812U (4 March 2013); doi: 10.1117/12.2003150
Show Author Affiliations
Yasuyuki Tsunoi, Keio Univ. (Japan)
Shunichi Sato, National Defense Medical College Research Institute (Japan)
Ryota Watanabe, Keio Univ. (Japan)
Satoko Kawauchi, National Defense Medical College Research Institute (Japan)
Hiroshi Ashida, National Defense Medical College Research Institute (Japan)
Mitsuhiro Terakawa, Keio Univ. (Japan)

Published in SPIE Proceedings Vol. 8581:
Photons Plus Ultrasound: Imaging and Sensing 2013
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?