
Proceedings Paper
Laser wakefield acceleration: application to Betatron x-ray radiation production and x-ray imagingFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
High intensity femtosecond laser pulses can be used to generate X-ray radiation. In the laser wakefield process, when a
high intensity laser pulse (<1018 W/cm2) is focused onto a gas jet target, it interacts with the instantaneously created under-dense plasma and excites a wakefield wave. In the wakefield electrons are trapped and accelerated to high energies in short distances. The electrons trapped in the wakefield can perform Betatron oscillations across the
propagation axis and emit X-ray photons. The Betatron X-ray beam is broadband as the radiation emission has a
synchrotron distribution. The X-ray beam is collimated and its pulse duration is femtosecond. For high resolution and
phase contrast X-ray imaging applications, the important feature of the X-ray Betatron beam is the μm source size.
Using ALLS 100 TW class laser system we demonstrate that the Betatron X-ray beam is both energetic and bright
enough to produce single laser shot phase contrast imaging of complex objects located in air.
Paper Details
Date Published: 24 October 2012
PDF: 9 pages
Proc. SPIE 8412, Photonics North 2012, 841211 (24 October 2012); doi: 10.1117/12.2001554
Published in SPIE Proceedings Vol. 8412:
Photonics North 2012
Jean-Claude Kieffer, Editor(s)
PDF: 9 pages
Proc. SPIE 8412, Photonics North 2012, 841211 (24 October 2012); doi: 10.1117/12.2001554
Show Author Affiliations
S. Fourmaux, Institut National de la Recherche Scientifique (Canada)
S. Corde, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
K. Ta Phuoc, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
P. Lassonde, Institut National de la Recherche Scientifique (Canada)
S. Payeur, Institut National de la Recherche Scientifique (Canada)
S. Corde, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
K. Ta Phuoc, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
P. Lassonde, Institut National de la Recherche Scientifique (Canada)
S. Payeur, Institut National de la Recherche Scientifique (Canada)
S. Gnedyuk, Institut National de la Recherche Scientifique (Canada)
F. Martin, Institut National de la Recherche Scientifique (Canada)
V. Malka, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
A. Rousse, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
J. C. Kieffer, Institut National de la Recherche Scientifique (Canada)
F. Martin, Institut National de la Recherche Scientifique (Canada)
V. Malka, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
A. Rousse, Lab. d’Optique Appliquée, ENSTA, CNRS, École Polytechnique (France)
J. C. Kieffer, Institut National de la Recherche Scientifique (Canada)
Published in SPIE Proceedings Vol. 8412:
Photonics North 2012
Jean-Claude Kieffer, Editor(s)
© SPIE. Terms of Use
