Share Email Print

Proceedings Paper

Impact of emission broadening on plasmonic enhancement with metallic gratings
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In particular, the surface plasmon polariton (SPP) is attractive to enhance the spontaneous emission (SE) from active materials due to the larger density of state (DOS) and smaller mode volume comparing with optical wave, namely Purcell effect. Usually, the Purcell factor (PF) is calculated from the reduced form of Fermi’s golden rule, where only the DOS and mode volume of photon (or SPP mode) are involved. Obviously, the PFs calculated with reduced form exclude the influence of active material and only evaluate the effect of cavity or SPP waveguide. However, for a practical emitter, the linewidth could not always be ignored. For example, the ensemble emission linewidth of mass Si- quantum dots (QD) is about 220meV~400meV (90~160nm), which are much wider than the linewidth of the SPP DOS In this work, the PF of SPP mode on Au-Si3N4 grating is calculated with full integration formula of Fermi’s golden rule by taking account of the spontaneous emission linewidth from single Si-QD. The calculated PF is about 1.7~1.4 within the emission range of †hω0 =1.9~1.6eV. Comparing with the PF value of 266.9~30.1, which is calculated without including the emission linewidth of Si-QD, it could be easily concluded that the impact of rather wide emission linewidth is fatal for applying plasmonic enhancement. To obtain some useful guidelines, we also discuss the necessary linewidth for effective plasmonic enhancement on Si-QDs. It is found that if the emission linewidth could be decreased to several tens of μeV, plasmonic enhancement would be helpful.

Paper Details

Date Published: 20 November 2012
PDF: 6 pages
Proc. SPIE 8564, Nanophotonics and Micro/Nano Optics, 85641B (20 November 2012); doi: 10.1117/12.2001020
Show Author Affiliations
Xue Feng, Tsinghua Univ. (China)
Kaiyu Cui, Tsinghua Univ. (China)
Yidong Huang, Tsinghua Univ. (China)

Published in SPIE Proceedings Vol. 8564:
Nanophotonics and Micro/Nano Optics
Zhiping Zhou; Kazumi Wada, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?