Share Email Print

Proceedings Paper

Three-dimensional line interpretation via local processing
Author(s): Alexander P. Pentland; Jeff Kuo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The interpretation of line drawings is known to be very difficult, and has a long history in vision research. However for certain restricted but important types of drawings we have been able to produce good 3-D interpretations quite efficiently using only local image-plane computations. The types of drawings we can handle are line drawings of 3-D space curves, for instance, a drawing of the 3-D path followed by a butterfly or a line drawing of a potato chip. Such line drawings are, of course, intrinsically ambiguous - there is simply not enough information in the 2-D image to arrive at a unique 3-D interpretation. Despite this difficulty, there remains the fact that for any given image all people see pretty much exactly the same 3-D interpretation (or sometimes a small number of interpretations). People, therefore, must be bringing additional knowledge or assumptions to the problem. In this paper we show that by picking the smoothest 3-D space curve that is consistent with the image data we can obtain a 3-D interpretation which is very similar to the people's interpretation. The teleological motivation for selecting the smoothest 3-D space curve is that it is the most stable 3-D interpretation, and thus in one sense the most likely 3-D interpretation. The process of computing the smoothest 3-D space curve is carried out by simple, local processing that can be implemented by a neural network.

Paper Details

Date Published: 1 October 1990
PDF: 7 pages
Proc. SPIE 1249, Human Vision and Electronic Imaging: Models, Methods, and Applications, (1 October 1990); doi: 10.1117/12.19685
Show Author Affiliations
Alexander P. Pentland, Massachusetts Institute of Technology (United States)
Jeff Kuo, Massachusetts Institute of Technology (United States)

Published in SPIE Proceedings Vol. 1249:
Human Vision and Electronic Imaging: Models, Methods, and Applications
Bernice E. Rogowitz; Jan P. Allebach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?