Share Email Print

Proceedings Paper

Geologic mapping of the Hekla volcano (Iceland) using integrated data sets from optic and radar sensors
Author(s): Tobias Wever; Gerhard Loercher
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

During the MAC-Europe campaign in June/July 1991 different airborne data sets (AIRSAR, TMS and AVIRIS) were collected over Iceland. One test site is situated around the Hekla-volcano in South Iceland. This area is characterised by a sequence of lava flows of different ages together with tuffs and ashes. This case study shall contribute to demonstrate the potential of MAC-Europe data for geological mapping. The optical- and the SAR data was analysed separately to elaborate the preferences of the different sensors. An approach was carried out to process an image representing the advantages of the respective sensors in only one presentation. The synergetic approach improves the separation of geological units clearly by combination of two completely different data sets due to the utilisation of spectral bands in the visible and infrared region on one side and on the other side in the microwave region. Beside the petrographical information extracted from optical data using spectral signatures the combination includes physical information like roughness and dielectricity of a target. The geologic setting of the test area is characterised by a very uniform petrography hence the spectral signatures are showing only little variations. Due to this fact, the differentiation of geological units using optical data is limited. The additional use of SAR data establishes the new dimension of the surface roughness which improves the discrimination clearly. This additional parameter presents a new information tool about the state of weathering, age and sequence of the different lava flows. The NASA/JPL AIRSAR system is very suitable for this kind of investigation due to its multifrequency and polarimetric capabilities. The three SAR frequencies (C-, L- and P-Band) enable the detection of a broad range of roughness differences. These results can be enhanced by comprising the full scattering matrix of the polarimetric AIRSAR data.

Paper Details

Date Published: 30 December 1994
PDF: 6 pages
Proc. SPIE 2315, Image and Signal Processing for Remote Sensing, (30 December 1994); doi: 10.1117/12.196723
Show Author Affiliations
Tobias Wever, Univ. of Muenchen (Germany)
Gerhard Loercher, Univ. of Muenchen (Germany)

Published in SPIE Proceedings Vol. 2315:
Image and Signal Processing for Remote Sensing
Jacky Desachy, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?