Share Email Print

Proceedings Paper

Theory of knowledge-based image analysis with applications to SAR data of agriculture
Author(s): Nanno J. Mulder
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The requirements for a theory of image analysis imply predictability of RS image measurements. RS images are predicted from a combined model of objects in 3 dimensions with samples taken at short time intervals. Image analysis is the inverse of image synthesis or image prediction. Inversion of the model of image synthesis requires additional knowledge about objects, processes and sensing. The role of knowledge is mainly to constrain the search effort in a problem space of hypotheses and parameters. The method of image analysis as reported here is a hypothesis driven method, in contrast to data driven methods of image interpretation, image processing or data fusion. In a reaction to a failing search for suitable GIS theories and structures, an alternative is reported for the classical integration of 2.5 dimensional GIS and RS with data driven image processing. The required theories and structures are taken from the domain of physical modelling. Knowledge about 3 dim objects and about processes is represented in physical models which may have a probabilistic component. Given a model for sensors, the atmosphere, radiation with matter interaction, and a set of hypotheses and parameters about objects and their state, hypotheses are evaluated and parameters are estimated. Hypothesis based analysis means comparison of hypotheses in the model domain with evidence coming from the RS measurement domain or feature domain. A specific problem addressed here is that of the estimation of geometric parameters of objects in microwave images. The treatment of prior probabilities appears to be critical. The relationship between statistics of the radiometric and geometric parameter estimators was investigated and results are reported. After the introduction of basic concepts of geometric and radiometric parameter estimation, a case of agricultural landuse classification is given. The case introduces the problem of converting classical vector data to parameterised geometric decision functions.

Paper Details

Date Published: 30 December 1994
PDF: 13 pages
Proc. SPIE 2315, Image and Signal Processing for Remote Sensing, (30 December 1994); doi: 10.1117/12.196717
Show Author Affiliations
Nanno J. Mulder, International Institute for Aerospace Survey and Earth Sciences (Netherlands)

Published in SPIE Proceedings Vol. 2315:
Image and Signal Processing for Remote Sensing
Jacky Desachy, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?