Share Email Print

Proceedings Paper

Meeting the challenge of advanced lithography reticle inspection
Author(s): Larry S. Zurbrick; Stephen D. Kirkish
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

New inspection capabilities have been developed in order to meet the emerging needs of reticle inspection. Many proposed optical proximity correction (OPC) methods currently utilize small (< 0.5 micrometers ) edge jogs on the reticle to affect edge feature placement on the wafer. A test plate with 50 nm to 0.50 micrometers edge jogs was fabricated and characterized with automatic inspection equipment. Maintaining input database resolution was found to be a significant factor in eliminating false stops at a high defect detection sensitivity. Inspection of attenuated and embedded attenuated (single layer halftone) phase shifting masks (PSM) has been successfully accomplished for both non-patterned blanks and patterned reticles. A new inspection mode was developed for non-patterned attenuated blank inspection which demonstrated 0.3 micrometers pinhole detection sensitivity and has the capability for +/- 5% absolute transmission error detection. Using programmed defect embedded attenuated phase shift mask test plates, defect detection sensitivity was found to be very similar to that of chrome masks. Deep UV (DUV) stepper technology for the production of 0.25 micrometers linewidths will challenge maskmakers' lithography, inspection, and repair processes.

Paper Details

Date Published: 7 December 1994
PDF: 9 pages
Proc. SPIE 2322, 14th Annual BACUS Symposium on Photomask Technology and Management, (7 December 1994); doi: 10.1117/12.195814
Show Author Affiliations
Larry S. Zurbrick, KLA Instruments Corp. (United States)
Stephen D. Kirkish, KLA Instruments Corp. (United States)

Published in SPIE Proceedings Vol. 2322:
14th Annual BACUS Symposium on Photomask Technology and Management
William L. Brodsky; Gilbert V. Shelden, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?