Share Email Print
cover

Proceedings Paper

Photothermal deflection in a supercritical fluid
Author(s): Matthew E. Briggs; Robert W. Gammon
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The total losses due to absorption and scatter from the best optical coatings can be made as low as <EQ 3 ppm, at the limit of sensitivity of present optical-absorption measurement techniques. We show by measurement and calculation that a dramatic increase in the sensitivity of absorption measurements is obtained by using a supercritical fluid, instead of an ordinary (non-critical) fluid, as the sensing fluid in a collinear photothermal-deflection apparatus. The noise floor in our surface-absorption measurements using supercritical xenon, Tc equals 16.7 degree(s)C, corresponds to an absorptance A equals Pabsorbed/Pincident equals 10-10 under illumination of 1 W. Bulk absorption measurements are similarly enhanced: the noise floor corresponds to an absorption coefficient of (alpha) equals 10-13 cm-1 for 1 W of illumination in a sample of length 1 cm. These levels are three orders of magnitude more sensitive than any previously reported. The enhancement is brought about by the divergence in the coefficient of thermal expansion of a fluid near the critical point. In attempting to use this sensitivity to measure the absorption in transmission of low-absorbing (<EQ few ppm) anti-reflection coatings, we found that the bare superpolished fused-silica and sapphire substrates absorb at A approximately 2 X 10-5. The low-level absorption at uncoated polished optical surfaces thus appears to be an important question.

Paper Details

Date Published: 4 November 1994
PDF: 10 pages
Proc. SPIE 2253, Optical Interference Coatings, (4 November 1994); doi: 10.1117/12.192180
Show Author Affiliations
Matthew E. Briggs, Univ. of Maryland (United States)
Robert W. Gammon, Univ. of Maryland (United States)


Published in SPIE Proceedings Vol. 2253:
Optical Interference Coatings
Florin Abeles, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray