Share Email Print

Proceedings Paper

Investigation of the microstructure of coatings for high-power lasers by nonoptical techniques
Author(s): Robert J. Tench; Mark R. Kozlowski; Robert Chow
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The microstructure of optical coatings strongly influence their resistance to high fluence laser, scatter properties, as well as their mechanical and environmental stability. The relative merits of nonoptical techniques such as scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and focused ion beam are discussed as they apply to optical multilayer coatings. The combination of these techniques provides a unique method to analyze defects in coatings. the long-term objective of this work is to understand the initiation and growth mechanisms of defects in optical coatings, investigate failure mechanisms of laser coatings, and suggest methods for reducing the number of defects during the deposition process. \to date, our defect analysis using nonoptical techniques has focused on hafnia/silica multilayers for high-power lasers. In summary, the information we have compiled about the defect seeds indicates that (1) seed size has an influence upon the mechanical stability of the whole defect, (2) seed shape and chemical composition reveal potential seed sources in the coating systems, and (3) defects can be initiated either as a single event or continuously during the deposition process. Also, it is shown that different vendors have characteristic defects and seeds.

Paper Details

Date Published: 4 November 1994
PDF: 7 pages
Proc. SPIE 2253, Optical Interference Coatings, (4 November 1994); doi: 10.1117/12.192138
Show Author Affiliations
Robert J. Tench, Lawrence Livermore National Lab. (United States)
Mark R. Kozlowski, Lawrence Livermore National Lab. (United States)
Robert Chow, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 2253:
Optical Interference Coatings
Florin Abeles, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?