Share Email Print

Proceedings Paper

Line drawing extraction from gray level images by feature integration
Author(s): Hoi J. Yoo; Daniel Crevier; Richard Lepage; Harley R. Myler
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We describe procedures that extract line drawings from digitized gray level images, without use of domain knowledge, by modeling preattentive and perceptual organization functions of the human visual system. First, edge points are identified by standard low-level processing, based on the Canny edge operator. Edge points are then linked into single-pixel thick straight- line segments and circular arcs: this operation serves to both filter out isolated and highly irregular segments, and to lump the remaining points into a smaller number of structures for manipulation by later stages of processing. The next stages consist in linking the segments into a set of closed boundaries, which is the system's definition of a line drawing. According to the principles of Gestalt psychology, closure allows us to organize the world by filling in the gaps in a visual stimulation so as to perceive whole objects instead of disjoint parts. To achieve such closure, the system selects particular features or combinations of features by methods akin to those of preattentive processing in humans: features include gaps, pairs of straight or curved parallel lines, L- and T-junctions, pairs of symmetrical lines, and the orientation and length of single lines. These preattentive features are grouped into higher-level structures according to the principles of proximity, similarity, closure, symmetry, and feature conjunction. Achieving closure may require supplying missing segments linking contour concavities. Choices are made between competing structures on the basis of their overall compliance with the principles of closure and symmetry. Results include clean line drawings of curvilinear manufactured objects. The procedures described are part of a system called VITREO (viewpoint-independent 3-D recognition and extraction of objects).

Paper Details

Date Published: 10 October 1994
PDF: 12 pages
Proc. SPIE 2353, Intelligent Robots and Computer Vision XIII: Algorithms and Computer Vision, (10 October 1994); doi: 10.1117/12.188883
Show Author Affiliations
Hoi J. Yoo, Univ. of Quebec (Canada)
Daniel Crevier, Univ. of Quebec (Canada)
Richard Lepage, Univ. of Quebec (Canada)
Harley R. Myler, Univ. of Central Florida (United States)

Published in SPIE Proceedings Vol. 2353:
Intelligent Robots and Computer Vision XIII: Algorithms and Computer Vision
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top