Share Email Print

Proceedings Paper

Applications of thin-film thermocouples for surface temperature measurement
Author(s): Lisa C. Martin; Raymond Holanda
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, thereby leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a Class 1000 Clean Room. The thermocouples are platinum-13% rhodium vs platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of Space Shuttle Main Engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

Paper Details

Date Published: 4 October 1994
PDF: 12 pages
Proc. SPIE 2270, NASA/SPIE Conference on Spin-Off Technologies from NASA for Commercial Sensors and Scientific Applications, (4 October 1994); doi: 10.1117/12.188837
Show Author Affiliations
Lisa C. Martin, NASA Lewis Research Ctr. (United States)
Raymond Holanda, NASA Lewis Research Ctr. (United States)

Published in SPIE Proceedings Vol. 2270:
NASA/SPIE Conference on Spin-Off Technologies from NASA for Commercial Sensors and Scientific Applications
Nona K. Minnifield, Editor(s)

© SPIE. Terms of Use
Back to Top