Share Email Print

Proceedings Paper

High-stability optical components for semiconductor laser intersatellite link experiment (SILEX) project
Author(s): Francois Lepretre
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Within the framework of a MATRA MARCONI SPACE FRANC contract for the European Space Agency, MATRA DEFENSE - DOD/UAO have developed, produced and tested 9 laser diode collimators, 52 optical components (anamorphoser, mirrors, dichroic splitters, redundancy module) and 9 interferential filters. All these space equipments must be integrated into the optical head of the SILEX (Semi-conductor Laser Intersatellite Link Experiment) bench. The SILEX experiment consists in transferring data from a low altitude satellite (SPOT 4) to a satellite in geostationary orbit (ARTEMIS) via beam generated by a laser diode (60 mW Cw). Very low emitted flux and long distance between the two satellites gives rise to the following technical difficulties: high angular (1 (mu) rad) and transverse stability requirements, requirement for high transmission and high rejection narrow band filters, in order to differentiate the transmit and receive channels, necessity of a very good optical wavefront, wavelength range 815-825 nm, 843-853 nm.

Paper Details

Date Published: 30 September 1994
PDF: 13 pages
Proc. SPIE 2210, Space Optics 1994: Space Instrumentation and Spacecraft Optics, (30 September 1994); doi: 10.1117/12.188128
Show Author Affiliations
Francois Lepretre, Matra DOD/UAO (France)

Published in SPIE Proceedings Vol. 2210:
Space Optics 1994: Space Instrumentation and Spacecraft Optics
Thierry M. Dewandre; Joachim J. Schulte-in-den-Baeumen; Emmanuel Sein, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?