Share Email Print

Proceedings Paper

Application of dynamic Huffman coding to image sequence compression
Author(s): Byeungwoo Jeon; Juha Park; Jechang Jeong
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In many image sequence compression applications, Huffman coding is used to reduce statistical redundancy in quantized transform coefficients. The Huffman codeword table is often pre-defined to reduce coding delay and table transmission overhead. Local symbol statistics, however, may be much different from the global one manifested in the pre-defined table. In this paper, we propose a dynamic Huffman coding method which can adaptively modify the given codeword and symbol association according to the local statistics. Over a certain set of blocks, local symbol statistics is observed and used to re-associate the symbols to the codewords in such a way that shorter codewords are assigned to more frequency symbols. This modified code table is used to code the next set of blocks. A parameter is set up so that the relative degree of sensitivity of the local statistics to the global one can be controlled. By performing the same modification to the code table using the decoded symbols, it is possible to keep up with the code table changes in receiving side. The code table modification information need not be transmitted to the receiver. Therefore, there is no extra transmission overhead in employing this method.

Paper Details

Date Published: 16 September 1994
PDF: 12 pages
Proc. SPIE 2308, Visual Communications and Image Processing '94, (16 September 1994); doi: 10.1117/12.185919
Show Author Affiliations
Byeungwoo Jeon, Samsung Electronics Co. (South Korea)
Juha Park, Samsung Electronics Co. (South Korea)
Jechang Jeong, Samsung Electronics Co. (South Korea)

Published in SPIE Proceedings Vol. 2308:
Visual Communications and Image Processing '94
Aggelos K. Katsaggelos, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?