Share Email Print

Proceedings Paper

Frequency-domain fluorescence spectroscopy of human stratum corneum
Author(s): Michael David Garrison; Russell O. Potts; William Abraham
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The intercellular lipid lamellae of mammalian stratum corneum (SC) constitute the major barrier to percutaneous penetration of drugs and other solute molecules. In order to understand the barrier property of skin on a molecular level, we have initiated fluorescence spectroscopic investigation of the membranous structures of the SC and related model systems using the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Incorporated into distearoylphosphatidylcholine and stratum corneum bilayers, DPH fluorescence reflected the change in lipid structure under thermal and chemical perturbations. Using a multiharmonic frequency approach, we measured the fluorescence lifetime and rotational correlation times for DPH in these systems. Our data indicated that a biexponential decay ((tau) 1 approximately equals 9 ns, (tau) 2 approximately equals 1.5 ns) described the intensity decay, while a hindered rotor model ((phi) approximately equals 5 ns, r(infinity ) approximately equals 0.3) described the anisotropy decay. These parameters reported the known thermotropic phase transition in porcine stratum corneum, and the influence of the penetration enhancer oleic acid in human epidermis. Thus, we have shown frequency- domain fluorescence spectroscopy to be a facile and powerful tool for monitoring the permeability of a solid tissue such as the SC.

Paper Details

Date Published: 17 August 1994
PDF: 11 pages
Proc. SPIE 2137, Time-Resolved Laser Spectroscopy in Biochemistry IV, (17 August 1994); doi: 10.1117/12.182782
Show Author Affiliations
Michael David Garrison, Cygnus Therapeutic Systems (United States)
Russell O. Potts, Cygnus Therapeutic Systems (United States)
William Abraham, Cygnus Therapeutic Systems (United States)

Published in SPIE Proceedings Vol. 2137:
Time-Resolved Laser Spectroscopy in Biochemistry IV
Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?