Share Email Print

Proceedings Paper

Characterization of defect geometries in multilayer optical coatings
Author(s): Robert J. Tench; Robert Chow; Mark R. Kozlowski
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Laser-induced damage in optical coatings is generally associated with micrometer-scale defects. A simple geometric model for nodule-shaped defects is commonly used to describe defects in optical coatings. No systematic study has been done, however, to prove the applicability of that model to standard optical coating deposition. Some defects are known not to have a classical nodule geometry. The present study uses atomic force microscopy (AFM) and scanning electron microscopy to characterize the topography of coatings defects in a HfO2/SiO2 multilayer mirror system. Focused ion-beam cross-sectioning is then used to study the underlying defect structure. This work develops a model for defect shape such that the overall geometry of a coating defect, particularly seed size and depth, can be inferred from non-destructive evaluation measurements such as AFM. The relative mechanical stabilities of nodular defects can be deduced based on the nodule's geometry. Auger analysis showed that the seed material that causes nodular defects in HfO2/SiO2 multilayers is a hafnia oxide. Such characterization capabilities are needed for understanding the enhanced susceptibility of particular defects to laser damage and for developing improved techniques for depositing low-defect density coatings.

Paper Details

Date Published: 28 July 1994
PDF: 11 pages
Proc. SPIE 2114, Laser-Induced Damage in Optical Materials: 1993, (28 July 1994); doi: 10.1117/12.180921
Show Author Affiliations
Robert J. Tench, Lawrence Livermore National Lab. (United States)
Robert Chow, Lawrence Livermore National Lab. (United States)
Mark R. Kozlowski, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 2114:
Laser-Induced Damage in Optical Materials: 1993
Harold E. Bennett; Lloyd L. Chase; Arthur H. Guenther; Brian Emerson Newnam; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top