Share Email Print

Proceedings Paper

Red diode laser for photodynamic therapy: a small animal efficacy study
Author(s): A. Charles Lytle; Daniel R. Doiron; Steven H. Selman M.D.
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Lasers have traditionally been the preferred light source for activation of the photosensitizing agents used in photodynamic therapy (PDT). Their monochromaticity, high power, and the ability to efficiently couple that power into optical fibers have dictated their use. Dye lasers, metal vapor lasers, or ion gas lasers have been used in the past as the excitation source for PDT, largely because they provided the only available alternatives. These laser systems are very large and complex, and are very expensive to operate. The introduction of high power visible red laser diodes have provided a cost effective alternative to existing lasers for use in PDT. This paper will describe the features of a prototype preclinical red laser diode source for photodynamic therapy, and will present the results of an animal study conducted with this device. The study, using the photosensitizer SnET2, compared the efficacy of PDT performed with the diode laser system with the results obtained from a traditional dye laser system. Future plans for a clinical version of the system will also be discussed.

Paper Details

Date Published: 19 July 1994
PDF: 7 pages
Proc. SPIE 2133, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy III, (19 July 1994); doi: 10.1117/12.179981
Show Author Affiliations
A. Charles Lytle, PDT Systems, Inc. (United States)
Daniel R. Doiron, PDT Systems, Inc. (United States)
Steven H. Selman M.D., Medical College of Ohio (United States)

Published in SPIE Proceedings Vol. 2133:
Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy III
Thomas J. Dougherty, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?