Share Email Print

Proceedings Paper

Conventional and synthetic aperture processing for airborne ground-penetrating radar
Author(s): Robert M. Cameron; William L. Simkins; Russell D. Brown
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

For the past four years Airborne Environmental Surveys, a division of Era Aviation, Inc., has used unique and patented airborne frequency modulated, continuous wave radars and processes for detection and mapping subsurface phenomena. Primary application has focused on the detection of manmade objects in landfills, hazardous waste sites (some of which contain unexploded ordnance), and subsurface plumes of refined free- floating hydrocarbons. Recently, MSB Technologies, Inc. has developed a form of synthetic aperture radar processing, called GPSAR, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars' coherent transmission and produces imagery that is better focused and more accurate in determining an object's range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

Paper Details

Date Published: 22 July 1994
PDF: 10 pages
Proc. SPIE 2217, Aerial Surveillance Sensing Including Obscured and Underground Object Detection, (22 July 1994); doi: 10.1117/12.179960
Show Author Affiliations
Robert M. Cameron, Airborne Environmental Surveys (United States)
William L. Simkins, MSB Technologies, Inc. (United States)
Russell D. Brown, MSB Technologies, Inc. (United States)

Published in SPIE Proceedings Vol. 2217:
Aerial Surveillance Sensing Including Obscured and Underground Object Detection
Ivan Cindrich; Nancy DelGrande; Sankaran Gowrinathan; Peter B. Johnson; James F. Shanley, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?