Share Email Print

Proceedings Paper

Photoacoustic determination of fluorescent quantum yields of protein probes
Author(s): Jeanne Rudzki Small; Shane L. Larson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Pulsed-laser photoacoustic methods may be used to determine the fluorescent quantum yields of fluorophores in solution. Of interest to biological spectroscopists are the fluorescent quantum yields of probes bound covalently or noncovalently to proteins. Previous studies (J.R. Small et al., Fluorescence Detection III, E.R. Menzel, ed., SPIE Proceedings 1054, pp. 26-35, 1989) have been extended to examine some common protein probes and their fluorescent quantum yields. Examples include the probes Prodan [6-propionyl-2-(dimethylamino)naphthalene] and Acrylodan [6- acryloyl-2-(dimethylamino)naphthalene] in a variety of protein and solvent environments. We have found that, at the simplest level, the pulsed-laser photoacoustic technique gives us excellent results for the fluorescent quantum yields of fluorophores free in solution, but interestingly anomalous results for the fluorophores bound to proteins. The source of the anomalous protein results has not yet been determined, but several possibilities are discussed.

Paper Details

Date Published: 1 May 1990
PDF: 11 pages
Proc. SPIE 1204, Time-Resolved Laser Spectroscopy in Biochemistry II, (1 May 1990); doi: 10.1117/12.17694
Show Author Affiliations
Jeanne Rudzki Small, Oregon State Univ. (United States)
Shane L. Larson, Oregon State Univ. (United States)

Published in SPIE Proceedings Vol. 1204:
Time-Resolved Laser Spectroscopy in Biochemistry II
Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?