Share Email Print

Proceedings Paper

Pentamethylpyrromethene boron difluoride complexes in human ovarian cancer photodynamic therapy
Author(s): Lee Roy Morgan; Aulena Chaudhuri; Laura E. Gillen; Joseph H. Boyer; Lionel T. Wolford
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Quasiaromatic heterocycles (QAM) such as substituted 1 , 3 , 5 , 7 , 8-pentamethylpyrromethene boron difluorides (PMP-BF2) and - (dimethoxyphosphinylmethyl, methyl) bimane have been evaluated for their abilities to produce cellular toxicities when used in photodynamic therapy (PDT) for ovarian cancer. The most active QAH tested to date has been the disodiuxn salt of PMP-2,6-disulfonate--BF2 (PMPDS-BF2). Human ovarian cancer cells from fifteen different patients have been grown in culture. Cells were obtained from biopsy material and grown in RPMI medium with 10% FBA plus penicillin and streptomycin. Cells were harvested and as single cell suspensions exposed to PMP-BF2 complexes or bimanes in concentrations of 0.004-0.4 ug/106 cells/ml of medium. Initially the cells were exposed to the chemicals for 30 minutes in a 5% CO2 incubator (37°C) with gentle shaking. The cells were washed with plain RPMI medium, then resuspended in the enriched RPMI medium and exposed to a sunlamp for 10-20 minutes. Cells were then allowed to grow in an soft agar culture media at 37°C (5% C02) for 14 days. When compared to controls (only light or only chemicals) there was 100% inhibition of all cellular growth for PMPDSBF2 at the 0.4 ug/mi concentrations. There was variations in concentrations of the chemical needed to produce 100% inhibition when the 15 different ovarian cancer cell specimens were compared at all concentrations. PMP-BF2 complexes are characterized by extremely high extinction coefficients, superior laser activity and little if any triplet-triplet absorption. The biamanes share these properties however are less active in ovarian cancer cell The lasing properties of PMP-BF2, and bimanes will be compared to their PDT effectiveness.

Paper Details

Date Published: 1 July 1990
PDF: 13 pages
Proc. SPIE 1203, Photodynamic Therapy: Mechanisms II, (1 July 1990); doi: 10.1117/12.17671
Show Author Affiliations
Lee Roy Morgan, Dekk-Tec, Inc., King Foundation, and Univ. of New Orleans (United States)
Aulena Chaudhuri, Dekk-Tec, Inc., King Foundation, and Univ. of New Orleans (United States)
Laura E. Gillen, Dekk-Tec, Inc. and King Foundation (United States)
Joseph H. Boyer, Univ. of New Orleans (United States)
Lionel T. Wolford, Univ. of New Orleans (United States)

Published in SPIE Proceedings Vol. 1203:
Photodynamic Therapy: Mechanisms II
Thomas J. Dougherty, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?