Share Email Print

Proceedings Paper

Characterization of photochemical cured acrylates with calorimetric methods
Author(s): Bernd Strehmel; Dirk Anwand; Henrik Wetzel
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Radical polymerization kinetics of different kinds of diacrylates was investigated in linear polymers (binders) by using an isoperibolic calorimeter. For all experiments benzoin compounds were added as photoinitiator. The ester between acrylic acid and bisphenol-A-diglycidylether (DDGDA) and hexamethylenediacrylate were used as monomers. Both compounds have a high limiting conversion and a large polymerization rate in the binders investigated. Additionally, three kinds of termination reaction were observed: first order, second order, and primary radical termination. The last reaction was mainly found in the case of using the hexamethylenediacrylate monomer. The materials were investigated by DSC to determine the phase behavior. Both monomers form one phase with the binder (polymethylmethacrylate, PMMA). In contrast, a phase separation was observed between the crosslinked hexamethylenediacrylate and PMMA. Formations of semi- interpenetrating networks were found in the case of crosslinked DDGDA and PMMA. The glass transition temperatures were determined at different polymerization degrees also. The obtained results indicate that most of the network formation occurred in the glassy state. Fluorescence probe technique was applied to study changes in the mobility during network formation. The fluorescence probe crystal violet (CV) was used because this compound shows a strong free volume-dependent fluorescence. It was found that in the glassy state, where most of networks were formed, a large variation of the molecular mobility was observed during irradiation of the photopolymers. This result was in agreement with the observations during DSC experiments.

Paper Details

Date Published: 16 May 1994
PDF: 12 pages
Proc. SPIE 2195, Advances in Resist Technology and Processing XI, (16 May 1994); doi: 10.1117/12.175393
Show Author Affiliations
Bernd Strehmel, Stanford Univ. (Germany)
Dirk Anwand, Martin-Luther Univ. Halle-Wittenberg (Germany)
Henrik Wetzel, Martin-Luther Univ. Halle-Wittenberg (Germany)

Published in SPIE Proceedings Vol. 2195:
Advances in Resist Technology and Processing XI
Omkaram Nalamasu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?