Share Email Print

Proceedings Paper

Acoustic-emission sensing in an on-board smart structural health monitoring system for military aircraft
Author(s): Constantine Marantidis; Craig B. Van Way; Jayanth N. Kudva
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A smart structural health monitoring system (SHMS) requires various sensing technologies to detect and locate flaws, and assess their criticality to the structural integrity of the aircraft. To realize its full potential, a SHMS must be capable of remotely sensing flaw growth and location. Acoustic emission (AE) is one of the few sensing technologies that is capable of direct and remote sensing of flaw growth. Currently, there are two AE sensing techniques used for monitoring, detecting and locating flaw growth in structural components. In one technique, specific AE event parameters are captured by narrowband transducers and are studied to identify their source and location. The other technique studies the whole AE waves captured by wideband transducers and then detects and locates flaw growth based on waveform analysis and the wave propagation characteristics of the structure being monitored. This paper investigates both AE techniques, establishes their limitations, and defines the goals that need to be achieved in AE technology before it can successfully be implemented into a SHMS.

Paper Details

Date Published: 1 May 1994
PDF: 7 pages
Proc. SPIE 2191, Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, (1 May 1994); doi: 10.1117/12.173954
Show Author Affiliations
Constantine Marantidis, Northrop Corp. (United States)
Craig B. Van Way, Northrop Corp. (United States)
Jayanth N. Kudva, Northrop Corp. (United States)

Published in SPIE Proceedings Vol. 2191:
Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation
James S. Sirkis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?