Share Email Print

Proceedings Paper

Self-correcting 100-font classifier
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We have developed a practical scheme to take advantage of local typeface homogeneity to improve the accuracy of a character classifier. Given a polyfont classifier which is capable of recognizing any of 100 typefaces moderately well, our method allows it to specialize itself automatically to the single -- but otherwise unknown -- typeface it is reading. Essentially, the classifier retrains itself after examining some of the images, guided at first by the preset classification boundaries of the given classifier, and later by the behavior of the retrained classifier. Experimental trials on 6.4 M pseudo-randomly distorted images show that the method improves on 95 of the 100 typefaces. It reduces the error rate by a factor of 2.5, averaged over 100 typefaces, when applied to an alphabet of 80 ASCII characters printed at ten point and digitized at 300 pixels/inch. This self-correcting method complements, and does not hinder, other methods for improving OCR accuracy, such as linguistic contextual analysis.

Paper Details

Date Published: 23 March 1994
PDF: 10 pages
Proc. SPIE 2181, Document Recognition, (23 March 1994);
Show Author Affiliations
Henry S. Baird, AT&T Bell Labs. (United States)
George Nagy, Rensselaer Polytechnic Institute (United States)

Published in SPIE Proceedings Vol. 2181:
Document Recognition
Luc M. Vincent; Theo Pavlidis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?