Share Email Print

Proceedings Paper

Next-state functions for finite-state vector quantization
Author(s): Nasser M. Nasrabadi; Nader Mohsenian; Hon-Tung Mak; Syed A. Rizvi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, a finite-state vector quantizer called Dynamic Finite-State Vector Quantization (DFSVQ) is investigated with regard to its subcodebook construction. In DFSVQ each input vector encoded by a small codebook, called subcodebook, is created from a much larger codebook called supercodebook. The subcodebook is constructed by selecting (reordering procedure) a set of appropriate codevectors from the supercodebook. The performance of the DFSVQ depends on this reordering procedure, therefore, several reordering procedures are introduced and their performances are evaluated in this paper. The reordering procedures that are investigated are the conditional histogram, address prediction, vector prediction, nearest neighbor design, and the frequency usage of codevectors. The performance of the reordering procedures are evaluated by comparing their hit ratios (the number of blocks encoded by the subcodebook) and their computational complexity. Experimental results are presented for both still images and video. It is found that for still images the conditional histogram performs the best and for video the nearest neighbor design performs the best.

Paper Details

Date Published: 22 October 1993
PDF: 15 pages
Proc. SPIE 2094, Visual Communications and Image Processing '93, (22 October 1993); doi: 10.1117/12.158008
Show Author Affiliations
Nasser M. Nasrabadi, SUNY/Buffalo (United States)
Nader Mohsenian, SUNY/Buffalo (United States)
Hon-Tung Mak, SUNY/Buffalo (United States)
Syed A. Rizvi, SUNY/Buffalo (United States)

Published in SPIE Proceedings Vol. 2094:
Visual Communications and Image Processing '93
Barry G. Haskell; Hsueh-Ming Hang, Editor(s)

© SPIE. Terms of Use
Back to Top