Share Email Print

Proceedings Paper

Edge-pixel-based stereo correspondence through ordering-oriented neural networks
Author(s): Pepe Siy; Joe-E Hu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper describes a fast and robust artificial neural network algorithm for solving the stereo correspondence problem in binocular vision. In this algorithm, the stereo correspondence problem is modelled as a cost minimization problem where the cost is the value of matching function between the edge pixels along the same epipolar line. A multiple-constraint energy minimization neural network is implemented for this matching process. This algorithm differs from previous works in that it integrates ordering, and geometry constraints in addition to uniqueness, continuity, and epipolar line constraint into a neural network implementation. The processing procedures are similar to that of human vision process. The edge pixels are divided into different clusters according to their orientation and contrast polarity. The matching is performed only between the edge pixels in the same clusters and at the same epipolar line. By following the epipolar line, the ordering constraint (the left-right relation between pixels) can be specified easily without building extra relational graph as in the earlier works. The algorithm thus assigns artificial neurons which follow the same order of the pixels along an epipolar line to represent the matching candidate pairs.

Paper Details

Date Published: 23 September 1993
PDF: 9 pages
Proc. SPIE 1915, Stereoscopic Displays and Applications IV, (23 September 1993); doi: 10.1117/12.157030
Show Author Affiliations
Pepe Siy, Wayne State Univ. (United States)
Joe-E Hu, Wayne State Univ. (United States)

Published in SPIE Proceedings Vol. 1915:
Stereoscopic Displays and Applications IV
John O. Merritt; Scott S. Fisher, Editor(s)

© SPIE. Terms of Use
Back to Top