Share Email Print

Proceedings Paper

How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The time-resolved reflectance of photons from a homogeneous tissue was modeled using a Monte Carlo simulation. The data was then converted by fast Fourier transform (FFT) into the frequency domain. In the frequency domain, the phase, (Phi) , and modulation, M, of collected light from a frequency-modulated light source was determined. A comparison of Monte Carlo and diffusion theory was made for various separation distances between the source and collector on the tissue surface. The results showed that Monte Carlo and diffusion theory agreed in the time domain only for times larger than 500 ps after injection of an impulse of photons. In the frequency domain, Monte Carlo and diffusion theory agreed only if the probe separation, r, was at least 2 cm apart for (mu) s' equals (mu) s(1 - g) equals 5 cm-1, or in dimension less units r(mu) s' > 10. The effect of buried absorbed is also tested in the time and frequency domains. A semi-infinite volume of absorber is placed at 0, 3 mm, 6 mm, or (infinity) from the surface of a nonabsorbing tissue. The presence of a deep absorber on the time and frequency domain data show that attenuation of longer pathlength photons causes the phase of collected photons to reduce and the modulation of collected photons to increase. Both effects are indicative of the net shorter pathlength of the ensemble of collected photons.

Paper Details

Date Published: 14 September 1993
PDF: 10 pages
Proc. SPIE 1888, Photon Migration and Imaging in Random Media and Tissues, (14 September 1993); doi: 10.1117/12.154649
Show Author Affiliations
Steven L. Jacques, Univ. of Texas M.D. Anderson Cancer Ctr. and Rice Univ. (United States)
Andreas H. Hielscher, Rice Univ. (United States)
Lihong V. Wang, Univ. of Texas M.D. Anderson Cancer Ctr. (United States)
Frank K. Tittel, Rice Univ. (United States)

Published in SPIE Proceedings Vol. 1888:
Photon Migration and Imaging in Random Media and Tissues
Britton Chance; Robert R. Alfano, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?