Share Email Print

Proceedings Paper

Comparison of a finite-element forward model with experimental phantom results: application to image reconstruction
Author(s): Martin Schweiger; Simon Robert Arridge; Mutsuhisa Hiraoka; Michael Firbank; David T. Delpy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a finite element (FE) model for calculation of photon propagation in highly scattering tissues. The model can either be used for time domain measurements, where the temporal distribution of transmitted light after an ultra short input pulse is measured, or for frequency domain measurements, where the input is a frequency modulated light source, and the phase shift and modulation depth between the input and output signal are measured. The FE model is used on inhomogeneous objects to investigate the effect of scattering and absorbing inhomogeneities on boundary measurements in both the time and frequency domain. The time and frequency versions are validated by comparing the results with data from analytical calculations and from a Monte-Carlo model. By comparing data from a two- dimensional and a three-dimensional FE model we derive a conversion factor for integrated intensity and mean time of flight that will permit the reconstruction of 3D data from a cylinder using a 2D FE model. The reconstruction is demonstrated on data generated with the FE forward model.

Paper Details

Date Published: 14 September 1993
PDF: 12 pages
Proc. SPIE 1888, Photon Migration and Imaging in Random Media and Tissues, (14 September 1993); doi: 10.1117/12.154635
Show Author Affiliations
Martin Schweiger, Univ. College London (United Kingdom)
Simon Robert Arridge, Univ. College London (United Kingdom)
Mutsuhisa Hiraoka, Univ. College London (Japan)
Michael Firbank, Univ. College London (United Kingdom)
David T. Delpy, Univ. College London (United Kingdom)

Published in SPIE Proceedings Vol. 1888:
Photon Migration and Imaging in Random Media and Tissues
Britton Chance; Robert R. Alfano, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?