Share Email Print

Proceedings Paper

Kinematics and computation of workspace for adaptive geometry structures
Author(s): Forouza Pourki; Horacio Sosa
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new feature in the design of smart structures is the capability of the structure to respond autonomously to undesirable phenomena and environment. This capability is often synonymous to the requirement that the structure should assume a set of different geometric shapes or adapt to a set of kinematic constraints to accomplish a maneuver. Systems with these characteristics have been referred to as `shape adaptive' or `variable geometry' structures. The present paper introduces a basis for the kinematics and work space studies of statically deterministic truss structures which are shape adaptive. The difference between these structures and the traditional truss structures, which are merely built to support the weight and may be modelled by finite element methods, is the fact that these variable geometry structures allow for large (and nonlinear) deformations. On the other hand, these structures unlike structures composed of well investigated `four bar mechanisms,' are statically deterministic.

Paper Details

Date Published: 8 September 1993
PDF: 11 pages
Proc. SPIE 1917, Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, (8 September 1993); doi: 10.1117/12.152745
Show Author Affiliations
Forouza Pourki, Drexel Univ. (United States)
Horacio Sosa, Drexel Univ. (United States)

Published in SPIE Proceedings Vol. 1917:
Smart Structures and Materials 1993: Smart Structures and Intelligent Systems
Nesbitt W. Hagood; Gareth J. Knowles, Editor(s)

© SPIE. Terms of Use
Back to Top