Share Email Print

Proceedings Paper

Superconducting detectors for submillimeter-wave astronomy
Author(s): Eric E. Bloemhof
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Sensitive heterodyne receivers are being built at ever higher frequencies with superconducting (SIS) junctions as the first mixer. These devices have extremely sharp non-linearities in their current-voltage characteristics as a result of quantum-mechanical tunneling of electrons across thin insulating barriers. The low energy scale set by the magnitude of the superconducting energy gap implies very low local oscillator power requirements for heterodyne operation. Some general system design considerations for astrophysical receivers are reviewed. These principles are illustrated by discussing two specific applications: a 230 GHz SIS receiver recently installed as a facility instrument at the Swedish-ESO submillimeter telescope in Chile, and the broader receiver requirements of the 6-antenna submillimeter array (SMA), an interferometer now being designed at the Harvard-Smithsonian Center for Astrophysics. The SMA will require receivers at frequencies as high as 820 GHz, and will place some unique demands on detector performance.

Paper Details

Date Published: 15 July 1993
PDF: 10 pages
Proc. SPIE 1874, Infrared and Millimeter-Wave Engineering, (15 July 1993); doi: 10.1117/12.148071
Show Author Affiliations
Eric E. Bloemhof, Harvard-Smithsonian Ctr. for Astrophysics (United States)

Published in SPIE Proceedings Vol. 1874:
Infrared and Millimeter-Wave Engineering
Harold T. Buscher, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?