Share Email Print

Proceedings Paper

Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen
Author(s): George T. Timberlake; Ann Patmore; Assaad Shallal; Dominic McHugh; John Marshall
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

Paper Details

Date Published: 7 July 1993
PDF: 10 pages
Proc. SPIE 1882, Laser-Tissue Interaction IV, (7 July 1993);
Show Author Affiliations
George T. Timberlake, Univ. of Kansas Medical Ctr. (United States)
Ann Patmore, St. Thomas's Hospital (United Kingdom)
Assaad Shallal, St. Thomas's Hospital (United Kingdom)
Dominic McHugh, Moorfields Eye Hospital (United Kingdom)
John Marshall, St. Thomas's Hospital (United Kingdom)

Published in SPIE Proceedings Vol. 1882:
Laser-Tissue Interaction IV
Steven L. Jacques; Abraham Katzir, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?