Share Email Print
cover

Proceedings Paper

New room-temperature deposition technique for optical coatings
Author(s): Philippe F. Belleville; Herve G. Floch
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We describe a new coating method `laminar flow coating' (LFC) technique developed to obtain highly reflective (HR) laser damage resistant sol-gel multidielectric coatings. Such coatings are used in high-power lasers for inertial confinement fusion experiments (ICF). This technique uses substrates in an upside-down position and a travelling wave of coating solution is laminary transported under the substrate surface with a tubular dispense unit. This creates a thin-film coating by the solvent evaporation. Satisfactory results have been obtained onto 20 cm square glass substrates regarding the optical performances, the thickness uniformity, the edge-effects and the laser damage resistance. This deposition technique combines the advantages of both classical techniques: the substrate non-exclusive geometry such as in dip- coating and the small solution consumption such as in spin-coating. The association of sol-gel colloidal suspensions and LFC coating process has been demonstrated as a promising way to produce cheap specific optical coatings.

Paper Details

Date Published: 24 June 1993
PDF: 9 pages
Proc. SPIE 1848, 24th Annual Boulder Damage Symposium Proceedings -- Laser-Induced Damage in Optical Materials: 1992, (24 June 1993); doi: 10.1117/12.147406
Show Author Affiliations
Philippe F. Belleville, Ctr. d'Etudes de Limeil-Valenton/CEA (France)
Herve G. Floch, Ctr. d'Etudes de Limeil-Valenton/CEA (France)


Published in SPIE Proceedings Vol. 1848:
24th Annual Boulder Damage Symposium Proceedings -- Laser-Induced Damage in Optical Materials: 1992
Harold E. Bennett; Lloyd L. Chase; Arthur H. Guenther; Brian Emerson Newnam; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray