Share Email Print

Proceedings Paper

Al-Si-Cu/TiN multilayer interconnection and Al-Ge reflow sputtering technologies for quarter-micron devices
Author(s): Takamaro Kikkawa; Kuniko Kikuta
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Issues of interconnection technologies for quarter-micron devices are the reliability of metal lines with quarter-micron feature sizes and the formation of contact-hole-plugs with high aspect ratios. This paper describes a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure as a quarter-micron interconnection technology and aluminum-germanium (Al-Ge) reflow sputtering as a contact-hole filling technology. The TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure could suppress stress-induced voiding and improve the electromigration mean-time to failure. These improvements are attributed to the fact that the grain boundaries for the Al-Si-Cu film and the interfaces between the Al-Si-Cu and the TiN films are strengthened by the rigid intermetallic compound, TiAl3. The Al-Ge alloy reflow sputtering is a candidate for contact- and via-hole filling technologies in terms of reducing fabrication costs. The Al-Ge reflow sputtering achieved low temperature contact hole filling at 300 degree(s)C. Contact holes with a diameter of 0.25 micrometers and aspect ratio of 4 could be filled. This is attributed to the low eutectic temperature for Al-Ge (424 degree(s)C) and the effect of thin polysilicon underlayer on the enhancement of Al-Ge reflow.

Paper Details

Date Published: 21 May 1993
PDF: 11 pages
Proc. SPIE 1805, Submicrometer Metallization: Challenges, Opportunities, and Limitations, (21 May 1993); doi: 10.1117/12.145464
Show Author Affiliations
Takamaro Kikkawa, NEC Corp. (Japan)
Kuniko Kikuta, NEC Corp. (Japan)

Published in SPIE Proceedings Vol. 1805:
Submicrometer Metallization: Challenges, Opportunities, and Limitations
Thomas Kwok; Takamaro Kikkawa; Krishna Shenai, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?