Share Email Print

Proceedings Paper

Classifications of dynamical systems and applications in vision geometry
Author(s): Ying Liu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, we study the families of dynamical systems which can be applied to learning. We first introduce three classifications of dynamical systems, based on attractor topology, space complexity of parameter space, and information capacity. Then, we demonstrate how each class of dynamical systems can be applied to learning. Thirdly, we show that there are three different types of geometry which are related to vision, the image geometry, the information geometry, and the dynamical system geometry. Finally, we discuss the relations between vision and all three geometries. This study helps in understanding the capabilities and limitations of a family of dynamical systems. Digital image geometry has been studied for a long time. Information geometry is proposed by Amari recently which study the manifold formed by free parameters of dynamical systems and its relation to vision. Dynamical system geometry abstractly studies the behavior of dynamical systems, and this study is independent of a detailed model, like neural networks or iterated function systems. A model, like neural network, usually occupies a subspace in the space of dynamical systems. In this paper, we also explore the relations among these three geometries.

Paper Details

Date Published: 9 April 1993
PDF: 13 pages
Proc. SPIE 1832, Vision Geometry, (9 April 1993); doi: 10.1117/12.142178
Show Author Affiliations
Ying Liu, Savannah State College (United States)

Published in SPIE Proceedings Vol. 1832:
Vision Geometry
Robert A. Melter; Angela Y. Wu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?