Share Email Print

Proceedings Paper

Onboard connectivity network for command-and-control aircraft
Author(s): Timothy J. Artz
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Command and control (C2) aircraft are host to an array of communications, information processing, and electronic control systems. The previous method of interconnecting this equipment involves point-to-point wiring harnesses between devices. A fiber optic broadband bus can be used to improve this situation by consolidating equipment connections on a shared medium. This network, known as the Onboard Connectivity Network (OCN), is being prototypes for application on the U.S. Government's Special Air Mission aircraft. Significant weight reduction and simplified future systems integration are the primary benefits of the OCN. The OCN design integrates voice, data, control, and video communications on a 3GHZ single mode fiber backbone. Communications within the aircraft use 500 MHz coaxial cable subnetworks connected to the backbone. The entire network is a dual redundant system for enhanced reliability. Node topologies are based on VMEbus to encourage use of commercial products and facilitate future evolution of the backbone topology. Network encryption technologies are being developed for OCN communications security. Automated workstations will be implemented to control and switch communications assets and to provide a technical control, test, and monitoring function.

Paper Details

Date Published: 9 February 1993
PDF: 12 pages
Proc. SPIE 1799, Specialty Fiber Optic Systems for Mobile Platforms and Plastic Optical Fibers, (9 February 1993); doi: 10.1117/12.141360
Show Author Affiliations
Timothy J. Artz, Booz, Allen & Hamilton, Inc. (United States)

Published in SPIE Proceedings Vol. 1799:
Specialty Fiber Optic Systems for Mobile Platforms and Plastic Optical Fibers
Luis Figueroa; Mototaka Kitazawa; Norris E. Lewis; Robert E. Steele; Deepak Varshneya, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?