Share Email Print

Proceedings Paper

Chromospheric and coronal observations with multilayer optics
Author(s): Arthur B. C. Walker II; Richard B. Hoover; Troy W. Barbee Jr.
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The first high resolution X-ray images of an astronomical object (the solar corona) formed with normal incidence multilayer optics, were obtained in late 1987. We review the developments which have occurred in multilayer optics technology since 1987, and discuss the advantages that these developments present for solar observations. The most significant advantages of multilayer optics are: (1) telescopes with modest apertures (about 0.1-0.5 meters) can achieve images with very high (about 0.1-0.3 arcsec) resolution; and (2) the spectral selectivity of multilayers permits the investigation of thermal structures with resolution T/(Delta)T is about 5-10. We describe the analysis of polar plumes observed in 1987 and of small X-ray emitting regions called 'bright points' observed in 1991 to illustrate the power of multilayer optics for astronomical studies.

Paper Details

Date Published: 21 January 1993
PDF: 12 pages
Proc. SPIE 1742, Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography, (21 January 1993); doi: 10.1117/12.140595
Show Author Affiliations
Arthur B. C. Walker II, Stanford Univ. (United States)
Richard B. Hoover, NASA Marshall Space Flight Ctr. (United States)
Troy W. Barbee Jr., Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 1742:
Multilayer and Grazing Incidence X-Ray/EUV Optics for Astronomy and Projection Lithography
Richard B. Hoover; Arthur B. C. Walker II, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?