Share Email Print

Proceedings Paper

Neural network for image compression
Author(s): Sethuraman Panchanathan; Tet H. Yeap; B. Pilache
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.

Paper Details

Date Published: 16 September 1992
PDF: 10 pages
Proc. SPIE 1709, Applications of Artificial Neural Networks III, (16 September 1992); doi: 10.1117/12.140015
Show Author Affiliations
Sethuraman Panchanathan, Univ. of Ottawa (Canada)
Tet H. Yeap, Univ. of Ottawa (Canada)
B. Pilache, Univ. of Ottawa (Canada)

Published in SPIE Proceedings Vol. 1709:
Applications of Artificial Neural Networks III
Steven K. Rogers, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?