Share Email Print

Proceedings Paper

Intramolecular electronic energy transfer in bichromophoric molecular macrocyclic systems
Author(s): Shammai Speiser
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The structures and spectral properties of several bichromophoric molecules, suitable for optical data processing, are presented. The bichromophoric molecules are composed of an aromatic ring connected by two methylene chains to an (alpha) -diketone moiety. Both the absorption and emission spectra of these compounds can be attributed to a superposition of the individual spectra of the separate chromophores. The critical transfer radia for electronic energy transfer from the aromatic (donor) chromophore to the (alpha) -diketone (acceptor) chromophore was calculated from the spectral overlap between the fluorescence spectrum of the aromatic ring with the absorption spectrum of the (alpha) -diketone chromophore. The results show that this series of molecules is well suited for a mechanistic study of short-range intramolecular electronic energy transfer (intra-EET). The temperature and the molecular structure dependence of the intra-EET efficiency in this series was measured and analyzed for both singlet-singlet and triplet-triplet routes. The results show that the transfer efficiency is strongly temperature and structure dependent, indicating that exchange interaction is responsible for intra-EET between close chromophores in a bichromophoric molecule. The relative contributions of interchromophoric distance and that of the relative orientation of the two chromophores to exchange interaction are discussed.

Paper Details

Date Published: 14 January 1993
PDF: 12 pages
Proc. SPIE 1774, Nonconducting Photopolymers and Applications, (14 January 1993); doi: 10.1117/12.139175
Show Author Affiliations
Shammai Speiser, Technion--Israel Institute of Technology (Israel)

Published in SPIE Proceedings Vol. 1774:
Nonconducting Photopolymers and Applications
Roger A. Lessard, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?