Share Email Print

Proceedings Paper

Reconstruction of embedded absorbers in random media with applications in noninvasive 3D imaging of skin lesions
Author(s): Prashanth Kini; Atam P. Dhawan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An optical backscatter measuring instrument called a Nevoscope is being developed to non- invasively determine 3D characteristics of skin lesions with applications in the diagnosis of malignant melanoma. Optical images are obtained by transilluminating the lesion and imaging backscattered radiation emanating from the skin surface. Such emission profiles contain information about the absorption characteristics of sub-surface structures. It is conceivable that such profiles can be used to reconstruct structural information of inhomogeneities such as mole embedded in the skin. Monte Carlo simulations of photon migration are performed to simulate the radiation pattern of backscattered radiation imaged at the surface of the medium when a light source is placed directly on the surface of the medium. In particular, simulations are performed on media with single embedded absorbers. This is the simplest model of a mole embedded in human skin. Some reconstruction algorithms based on the difference in emission profiles is the presence and absence of the absorber, are tested. A prototype Nevoscope presently being used for visual examination is described. Heuristic reconstruction schemes using images obtained from the Nevoscope are also presented.

Paper Details

Date Published: 29 December 1992
PDF: 12 pages
Proc. SPIE 1767, Inverse Problems in Scattering and Imaging, (29 December 1992); doi: 10.1117/12.139032
Show Author Affiliations
Prashanth Kini, Univ. of Cincinnati (United States)
Atam P. Dhawan, Univ. of Cincinnati (United States)

Published in SPIE Proceedings Vol. 1767:
Inverse Problems in Scattering and Imaging
Michael A. Fiddy, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?