Share Email Print

Proceedings Paper

Electromagnetic interaction of spacecraft with ambient environment
Author(s): Hwar-Ching Ku; David M. Silver
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A model of the midcourse space experiment (MSX) spacecraft and its electromagnetic environment has been developed using the potential of large spacecraft in the Auroral region (POLAR) code. The geometric model has a resolution of 0.341 meters and uses six materials to simulate the electrical surface properties of MSX. The vehicle model includes features such as the major instruments, electronic boxes, radiators, a dewar and open bay, a booster attachment ring, and three different orientations of the solar panels. The electron and ion composition and temperature environment are modeled as a function of the solar activity. Additional parameters include the ram-wake orientation, the hot electron spectrum, day-night-twilight variations, latitudinal variations, and solar panel voltage biasing. Nominal low spacecraft charging cases are described. Calculation with a high peak energetic electron flux produces a ground potential of -180 volts and differential charging as high as 66 volts.

Paper Details

Date Published: 11 January 1993
PDF: 8 pages
Proc. SPIE 1761, Damage to Space Optics, and Properties and Characteristics of Optical Glass, (11 January 1993); doi: 10.1117/12.138918
Show Author Affiliations
Hwar-Ching Ku, Johns Hopkins Univ. (United States)
David M. Silver, Johns Hopkins Univ. (United States)

Published in SPIE Proceedings Vol. 1761:
Damage to Space Optics, and Properties and Characteristics of Optical Glass
James B. Breckinridge; Alexander J. Marker III, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?